If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+26X+34=0
a = 1; b = 26; c = +34;
Δ = b2-4ac
Δ = 262-4·1·34
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-6\sqrt{15}}{2*1}=\frac{-26-6\sqrt{15}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+6\sqrt{15}}{2*1}=\frac{-26+6\sqrt{15}}{2} $
| y/13+2=6 | | (4x^2+25)(4x^2-25)=0 | | 10x-5-6x=19 | | 4(x+1)-10=10 | | 4w+10+6w-20=180 | | x/120-15=1065 | | 14(n-6)=1/4n-2/3 | | 2a=3a/5+1 | | 68+x+9=90 | | 7x+38x-7=9(5x+8) | | -(y+-7)=1 | | 4n+5=31 | | 47x-64=547 | | -6t-4=8 | | 3f-6=12 | | 7x+10=35 | | −m4=38 | | 6(s+1)=12 | | 15x+20=380 | | 6+-8d=-42 | | 13-3g=1 | | -8k+1=4-8k | | 18x+10=6(3x+4) | | 4(b-18)=4 | | 5x-12-2x+24=180 | | 5x+(-x)-1=11 | | -7b-14=-5b-2b | | 2g+12+6g=180 | | 2x-5/3=27 | | 0.8q+6.2=7.32 | | 20w+2=10w+32 | | -9(10+w)=-243 |